
GRAPHEME-TO-PHONE USING FINITE-STATE TRANSDUCERS

D. Caseiro, I. Trancoso, L. Oliveira

INESC-ID/IST
Rua Alves Redol 9, 1000-029 Lisbon, Portugal

C. Viana

CLUL
Av. Prof. Gama Pinto 2, Lisbon, Portugal

ABSTRACT

Several approaches have been adopted over the years for
grapheme-to-phone conversion for European Portuguese: hand-
derived rules, neural networks, classification and regression trees,
etc. This paper describes different approaches implemented as
Weighted Finite State Transducers (WFSTs), motivated by their
flexibility in integrating multiples sources of information and other
interesting properties such as inversion. We describe and compare
rule-based, data-driven and hybrid approaches. Best results were
obtained with the rule-based approach, but one should take into
account the fact that the data-driven one was trained with automat-
ically transcribed material.

1. INTRODUCTION

This paper describes the development of a grapheme-to-phone
conversion module based on WFSTs for European Portuguese. We
investigated both the use of knowledge-based and data-driven ap-
proaches.

The objective of a grapheme-to-phone module implemented
as WFSTs is justified by their flexibility in the efficient and elegant
integration of multiple sources of information, such as the informa-
tion provided by other “text-analysis” modules. The flexibility of
WFSTs also allows the easy integration of knowledge-based with
data-driven methods.

Our first approach to grapheme-to-phone (GtoP) conversion
for European Portuguese was a rule-based system (DIXI), with
about 200 rules[1]. All the code was programed in C, directly
in the case of the stress assignment rules, and using the SCYLA
(”Speech Compiler for Your Language”) [2] rule compiler, devel-
oped by CSELT, for the remaining rules. The multi-level structure
of this compiler allowed each procedure to simultaneously access
the data resulting from all the previous procedures, so the rules
could simultaneously refer to several levels (such as the grapheme
level, phone level, sandhi level, etc.)

Later, this rule-based approach was compared with a neural
net approach [3] that, in spite of the fairly good results, was never
integrated in our synthesizer. Instead, we integrated an approach
based on CARTs (Classification and Regression Trees) combined
with a large coverage lexicon, as part of the porting of our TTS
system (now designated as DIXI+) [4] to the Festival framework
[5].

The present work is part of Diamantino Caseiro’s PhD thesis, initially
sponsored by a FCT scholarship (PRAXIS XXI/BD/15836/98). It has been
conducted within the DIXI+ project, supported by the Portuguese Founda-
tion for Science and Technology (FCT). INESC-ID Lisboa had support
from the POSI program of the “Quadro Comunitario de Apoio III”.

Some of the most common approaches to grapheme-to-phone
convertion can be compiled to WFSTs, among which are CARTs
[6], and most rule systems, such as two-level [7] and rewriting
rules [8].

In this work, we first show how we compiled the rules of the
DIXI system to WFSTs (Section 2), we then present data-driven
approaches to the problem (Section 3), and finally we combine the
knowledge-based with the data-driven approaches (Section 4).

In order to assess the performance of the different methods, we
used a pronunciation lexicon built on the PF (“Português Funda-
mental”) corpus. The lexicon contains around 26000 forms. 25%
of the corpus was randomly selected for evaluation. The remaining
portion of the corpus was used for training or debugging.

The size of the training material for the data-driven approaches
was increased with a subset of the BD-Público [9] text corpus.
This corpus includes a collection of texts from the on-line edition
of the Público newspaper. We used all the words occurring in the
first 1,000,000 paragraphs of this corpus, and obtained their tran-
scription by rule using DIXI. The 205k words not in PF were added
to the training set.

2. KNOWLEDGE-BASED SYSTEM

Our first goal was to convert DIXI’s rules to a set of WFSTs.
SCYLA rules are of the usual form � � ��� � where �, �,
� and � can be regular expressions that refer to one or multiple
levels. The meaning of the rules is that when � is found in the
context with � on the left and � on the right, � will be applied,
replacing it or filling a different level of �.

The application of standard generative rewriting rules [10] to
a sequence of graphemes, poses some well known problems, as
it leads to unnecessary rule dependencies due to the replacement
of graphemes by phones: the first rule has only graphemes on its
context, while the last ones have mainly phones. That happens to
a small-extend in [11], for example.

In DIXI’s case, some of these problems may be avoided, as
most of the grapheme-to-phone rules were written such that �, �
and � only refer to the grapheme level (with stress marks already
placed on it) and � only to the phone level, represented in a differ-
ent tier of the multi-level data-structure. There are no intermediate
stages of representation and no rule creates or destroys the neces-
sary context for the application of another rule. In order to prevent
some common errors, a small set of 6 rules was neverthless added
which refer grapheme-phone correspondances on either context �
or �. Note, however, that although some similarities may be found
between DIXI’s and a Two-Level Phonology approach ([12], [13]),
DIXI’s rules are not two-level rules: contexts are not fully speci-
fied as strings of two-level correspondances and within the set of
rules for each grapheme, a specific order of application is required.

Default rules need to be the last and in some cases in which the
contexts of different rules overlapp partially, the most specific rule
needs to be applied first.

In order to preserve the semantic of DIXI’s rules we opted to
use rewriting rules, but in the following way:

First, the grapheme sequence ��� ��� ���� ��, is transduced into
��� � ��� � ���� � ��, where is an empty symbol, used as a place-
holder for phones. Each rule will replace with the phone corre-
sponding to the previous grapheme, keeping it. The context of the
rules can now freely refer to the graphemes. The few DIXI rules
whose context referred to phones can also be straightforwardly im-
plemented. The very last rule removes all graphemes, leaving a
sequence of phones. The input and output language of the rule
transducers is thus a subset of ���	
��
�
������. The set of
graphemes and the set of phones do not overlap.

2.1. Rule specification language

The rules are specified using a rule specification language, whose
syntax resembles the BNF (Backus Naur Form) notation, allow-
ing the definition of non-terminal symbols (e.g. $Vowel). Regu-
lar expressions are also allowed in the definition of non-terminals.
Transductions can be specified by using the simple transduction
operator 	 � �, where 	 and � are terminal symbols. This work
motivated us to extend the language with two commands.

The first one is:

OB RULE �� �� ��� �

where � is the rule name and �� �� �� � are regular expres-
sions. OB RULE specifies a context dependent obligatory rule, and
is compiled using Mohri and Sproat’s algorithm[14].

The second command is:

CD TRANS �� � � � �

where � is a transducer (an expression that might include the
� operator). CD TRANS (Context-Dependent Transduction) is a
generalization where the replacing expression depends on what
was matched. It is compiled using a variation of Mohri and
Sproat’s algorithm, that uses ����� instead of �, and � instead of
the cross product ���. Its main advantage is that it can succinctly
represent a set of rules that apply to the same context. We use it
mainly in the stress-marking phase of the grapheme-to-phone con-
version.

2.2. Grapheme-to-Phone Phases

The rules of the grapheme-to-phone system are organized in vari-
ous phases, each represented by transducers that can be composed
to build the full system. Figure 1 shows how the various phases
are composed.

Each phase has the following function:

� the stress phase consists of 27 rules that mark the
stressed vowel of the word.

� introduce-phones is the simple rule that inserts the
empty phone placeholder after each grapheme. ($Letter
(NULL� EMPTY))�).

� prefix-lexicon consists of pronunciation rules for
compound words, namely with roots of Greek or Latin ori-
gin such as “tele” or “aero”. It includes 92 rules.

� gr2ph is the bulk of the system, and consists of 340
rules, that convert the 45 graphemes (including graphically
stressed versions of vowels) to phones.

� sandhi implements word co-articulation rules across
word boundaries. (This rule set was not tested here, given
the fact that the test set consists of isolated words.)

� remove-graphemes removes the graphemes in order to
produce a sequence of phones.

($Letter � NULL �).

stress o
introduce-phones o
prefix-lexicon o

gr2ph o
sandhi o

remove-graphemes

Fig. 1. Phases of the knowledge based system.

The following example illustrates the specification of 2
gr2ph rules for deriving the pronunciation of grapheme �: ei-
ther as /Z/ (e.g. agenda, gisela) when followed either by � or �, or
as /g/ otherwise (SAMPA symbols used).

OB_RULE 0200, g EMPTY -> g _Z \
/ NULL ___ ($AllE | $AllI)

OB_RULE 0201, g EMPTY -> g _g \
/ NULL ___ NULL

2.3. From rules to transducers

The compilation of the rules results in a very large number of WF-
STs (almost 500) that need to be composed in order to build a
single grapheme-to-phone transducer. We did not build a single
WFST but selectively composed the WFSTs and obtained a small
set of 10 WFSTs that are composed with the grapheme WFST in
runtime to obtain the phone WFST .

The most problematic phase was gr2ph. We started by com-
posing each of the other phases in a single WFST . gr2ph was
first converted to a WFST for each grapheme. Some graphemes,
such as �, lead to large transducers, while others, lead to very
small ones. Due to the way we specified the rules, the order of
composition of these WFSTs was irrelevant. Thus we had much
flexibility in grouping them and managed to obtain 8 transducers
with an average size of 410k. Finally, introduce-phones and
remove-graphemeswere composed with other WFSTs and we
obtained the final set of 10 WFSTs.

In runtime, we can either compose the grapheme WFST in
sequence with each WFST , removing dead-end paths at each step,
or we can perform a lazy simultaneous composition of all WFSTs.
This last method is slightly faster than the DIXI system.

2.4. Evaluation

We evaluated the WFST-based rule approach, and compared its
performance with the one of our previous rule-based DIXI system.
As can be seen in table 1, the WFST achieved almost the error
rate of the DIXI system it is emulating, both at a word level and

at a segmental level. The two rightmost columns show the error
rates obtained without taking stress mark errors into account. The
difference between the performance of the current and previous
approaches is due to the exception lexicon included in DIXI that we
did not yet implement. Such a lexicon can be easily implemented
as a WFST applied after prefix-lexicon. We plan to integrate
this lexicon and balance its size with the rule system, in order to
simplify it by replacing rules that apply to just a few words with
lexicon entries.

System % Error % Error w/o stress
word segm. word segm.

WFST 3.56 0.54 3.13 0.47
DIXI 3.25 0.50 2.99 0.45

Table 1. Comparison of the current and previous rule-based ap-
proaches.

3. DATA-DRIVEN APPROACH

3.1. Grapheme-Phone Alignment

The first step in preparing the corpus for the data driven tech-
niques consisted of aligning each grapheme with the correspond-
ing phone.

We performed the alignment by minimizing the string-edit dis-
tance between corresponding grapheme and phone strings. We en-
coded the distance between any grapheme and any phone, as well
as the insertion costs of phones and the deletion costs of graphemes
as a transducer �. The alignment between a grapheme sequence �
and a phone sequence
 was obtained as ����
	���� Æ � Æ
�.

When creating � we opted to capitalize on the knowledge ob-
tained from the rule system, although automatic techniques exist
that can learn such a transducer automatically [15].

Besides the usual matching of 1 grapheme to 1 phone, we also
allowed the direct matching of some sequences. The cost of match-
ing a grapheme sequence with a phone sequence was set to zero if
there is a rule that assigns the phone sequence to the grapheme
sequence (completely ignoring the context of the rule). In most
cases, the matching was of 1 grapheme to 1 phone, but we mod-
eled some cases of 2 graphemes to 1 phone (such as nh � /J/, lh
� /L/, rr � /R/) and some cases of 1 grapheme to 2 or 4 phones
(such as ê � /6�j�6�j�/ in têm). In order to score all possi-
ble alignments, we allowed the alignment of a grapheme with any
phone, the deletion of graphemes and the insertion of phones, also
at a cost. The costs were set empirically but are similar to the costs
used to determine the word error rate in speech recognition (3 for
insertion and deletion, 4 for substitution and 0 for matching).

3.2. N-gram approach

The alignment obtained in section 3.1 is a sequence of pairs
(grapheme, phone), where the grapheme or the phone can also be
�. Our first data-driven approach consisted of modeling that se-
quence using an n-gram model, as proposed by [16].

This model is based on the probability of a grapheme matching
a particular phone given the history up to the previous �� � pairs
(� �����
�����������
���������������
�����).

The language model is first converted to a finite-state acceptor
(WFSA) over pairs of symbols, and then to a finite-state transducer
�, by transforming each pair of symbols into an input and an output

label. � is ambiguous because epsilons are used to model back-
off transitions during the conversion from n-gram to WFSA, and
hence, even is there is an explicit n-gram in the model, the WFSA
will still allow alternative paths that use the backoff.

Due to this ambiguity, in order to use the WFST to convert
a grapheme sequence WFST � to phones, we need to compute
����
	������� Æ ���.

We trained various n-gram backoff language models using his-
tory lengths �� � ranging from 2 to 7. Table 2 shows the size of
the various models, and table 3 shows the error rate on the test set
(second and third columns).

� n-grams states edges bytes
8 1,392,426 820,778 1,983,113 42M
7 981,565 592,184 1,459,738 30M
6 657,107 361,944 980,123 20M
5 401,855 159,425 549,398 11M
4 173,307 37,869 208,668 4M
3 42,451 3,618 46,018 0.8M

Table 2. Pair n-gram WFSTs.

n % Error % Error w/o stress
word graph. word graph.

8 9.04 1.37 6.11 0.90
7 9.02 1.37 6.12 0.90
6 9.16 1.37 6.13 0.90
5 9.86 1.46 6.38 0.93
4 15.34 2.25 9.23 1.32
3 31.62 4.62 18.42 2.67

Table 3. Performance of the n-gram approach.

4. COMBINING DATA-DRIVEN AND
KNOWLEDGE-BASED APPROACHES

One of the greatest advantages of the WFST representation is the
flexible way in which different methods may be combined. In this
section we show some examples of the combination of data-driven
with knowledge-based methods.

In [16], as an example of the integration of knowledge-based
with data-driven methods, some improvements were obtained by
composing the n-gram WFST with a WFST that restricts the pri-
mary stress to exactly one per word. This type of restriction had
also been implemented in our neural network method as a post-
processing filter.

We opted for a different approach: as we have the stress mark-
ing WFST stress, we decided to perform the grapheme-phone
alignment of the training data not with the original words, but with
the output of the stress WFST . The alignments thus obtained
were used to build n-gram WFSTs, as described in section 3.2.
To convert a sequence of graphemes � to phones, we now use
����
	������� Æ stress Æ ���. Table 4 shows the results ob-
tained with this variation with several n-gram models. We observe
a reduction of the word error rate to less than half. The result is
even more impressive when we remember that around 90% of the
training set was converted by rule with a system that has around
3% errors. The size of the n-gram WFSTs was similar.

n % Error % Error w/o stress
word graph. word graph.

8 4.01 0.61 3.65 0.54
7 3.94 0.59 3.58 0.53
6 4.02 0.61 3.66 0.55
5 4.04 0.61 3.68 0.55
4 4.48 0.67 4.13 0.60
3 6.40 0.96 6.15 0.91

Table 4. Performance of the n-gram approach, when trained and
used after the stress marking WFST .

5. CONCLUDING REMARKS

This paper compared several WFST-based approaches to GtoP for
European Portuguese: rule-based, data-driven and hybrid. Best
results were obtained with the rule-based approach, but one should
take into account the fact that the data-driven one was trained with
automatically transcribed material.

The comparison between the different approaches should con-
sider as well the size of the resulting transducers and other prop-
erties which may also be quite relevant, such as the fact that the
rule-based approach generates dead ends, whereas the n-gram ap-
proach does not, but requires a best-path search.

In the future, we plan to improve our rule-based approach by
obtaining a better balance between number of rules and lexicon
size, as explained earlier. We also plan to convert our CART-based
approach to the WFST framework. This will give us much flexibil-
ity in combining the various methods, for example, a WFST result-
ing from the conversion of the tree of a particular grapheme could
replace the respective grapheme rules in the WFST rule-based sys-
tem.

Another type of approach we plan to explore is
transformation-based learning (TBL). This approach was
first proposed as an effective way to learn part-of-speech (POS)
rules [17], and it has since been used in other tasks such as
spelling correction, dialogue act tagging, etc. In [11] it was used
as a way to improve a Dutch rule-based grapheme-to-phoneme
system. TBL is a very attractive technique because the learned
rules can be very readable and interpretable. Furthermore, the
learned rule-set can be converted to an efficient deterministic
WFST [18].

The inversion property of transducers opens the possibility of
using GtoP techniques in tasks such as reconstructing out of vocab-
ulary words [19] in large vocabulary speech recognition systems.
This is an area which we also plan to explore in the near future.

6. REFERENCES

[1] L. Oliveira, M. Viana, and I. Trancoso, “A Rule-Based Text-
to-Speech System for Portuguese,” in Proc. ICASSP ’1992,
San Francisco, USA, March 1992.

[2] S. Lazzaretto and L. Nebbia, “Scyla: Speech Compiler for
your Language,” in Proc. of the European Conf. on Speech
Technology, Edimburgh, UK, September 1987, vol. 2.

[3] I. Trancoso, M. Viana, F. Silva, G. Marques, and L. Oliveira,
“Rule-Based vs. Neural Network Based Approaches to
Letter-to-Phone Conversion for Portuguese Common and
Proper Names,” in Proc. ICSLP ’94, Yokohama, Japan, Sept.
1994.

[4] L. Oliveira, M. C. Viana, A. I. Mata, and I. Trancoso,
“Progress Report of Project DIXI+: A Portuguese Text-to-
Speech Synthesizer For Alternative and Augmentative Com-
munication,” Tech. Rep., FCT, Jan. 2001.

[5] A. Black and K. Lenzo, “Building Voices in the Festival
Speech Synthesis System,” in Festival version 1.4.1, CMU,
2000.

[6] R. Sproat and M. Riley, “Compilation of Weighted Finite-
State Transducers from Decision Trees,” in 34th Annual
Meeting of the Association for Computational Linguistics,
Santa Cruz, USA, 1996.

[7] L. Karttunen, K. Koskenniemi, and R. Kaplan, “A Com-
piler For Two-Level Phonological Rules,” Tech. Rep. CSLI-
87-108, Center for the Study of Language and Information,
Stanford University, 1987.

[8] R. Kaplan and M. Kay, “Regular Model of Phonological
Rule Systems,” Computational Linguistics, vol. 3, no. 20,
pp. 331–378, 1994.

[9] J. Neto, C. Martins, H. Meinedo, and L. Almeida, “The De-
sign of a Large Vocabulary Speech Corpus for Portuguese,”
in Proc. Eurospeech ’97, Rhodes, Greece, Sept. 1997.

[10] N. Chomsky and M. Halle, Sound Pattern of English, Harper
and Row, 1968.

[11] G. Bouma, “A Finite-State and Data-Oriented Method for
Grapheme to Phoneme Conversion,” in 1st Meeting of the
North American Chapter of the Association for Computa-
tional Linguistics, Seattle, USA, 2000.

[12] K. Koskenniemi, Two-Level morphology: A general Compu-
tational Model for Word-Form Recognition and Production.,
Ph.D. thesis, University of Helsinki, 1983.

[13] E. L. Antworth, “PC-KIMMO: A Two-Level Processor for
Morphological Analysis,” Tech. Rep., Occasional Publica-
tions in Academic Computing No 16. Dallas, TX: Summer
Institute of Linguistics, 1990.

[14] M. Mohri and R. Sproat, “An Efficient Compiler for
Weighted Rewrite Rules,” in 34th Annual Meeting of the As-
sociation for Computational Linguistics, Santa Cruz, USA,
1996.

[15] W. Daelemans and A. van den Bosch, “Language-
Independent Data-Oriented Grapheme-to-Phoneme Conver-
sion,” in Progress in Speech Synthesis, J. van Saten,
R. Sproat, J. Olive, and J. Hirschberg, Eds. Springer, New
York, USA, 1997.

[16] R. Sproat, “Corpus-Based Methods and Hand-Build Meth-
ods,” in Proc. ICSLP ’2000, Beijing, China, October 2000.

[17] E. Brill, “Transformation-Based Error-Driven Learning and
Natural Language Processing: A Case Study in Part-of-
Speech Tagging,” Computational Linguistics, vol. 21, pp.
543–566, 1995.

[18] E. Roche and Y. Schabes, “Deterministic Part-of-Speech
Tagging with Finite-State Transducers,” Computational Lin-
guistics, vol. 21, pp. 227–253, June 1995.

[19] B. Decadt, J. Duchateau, W. Daelemans, and P. Wambacq,
“Transcription of Out-of-Vocabulary Words in Large Vocab-
ulary Speech Recognition Based on Phoneme-to-Grapheme
Conversion,” in Proc. ICASSP’2002, Orlando, Florida, May
2002.

