
USING DYNAMIC WFST COMPOSITION FOR R

Diamantino Caseiro, Isabe

L2F Spoken Language Sy
INESC-ID/IST

Rua Alves Redol 9, 1000-029 L
{dcaseiro, Isabel.Trancoso}@l

ABSTRACT

Our first application of weighted finite state transducers to the
recognition of broadcast news provided us with an interesting
framework to study several problems related to the optimization of
the search space. The paper starts by describing how the use of our
lexicon and language model “on-the-fly” composition algorithm is
crucial in extending the transducer approach to large systems. We
present an efficient representation for WFSTs, that allowed us to
reduce runtime memory requirements, and discuss several types
of language model optimizations, including a context-sharing al-
gorithm. Experimental results obtained with the broadcast news
corpus collected for European Portuguese illustrate the impact of
the various possible optimizations of the components on the per-
formance of the system.

1. INTRODUCTION

The integration of knowledge sources in large vocabulary continu-
ous speech recognition using weighted finite state transducers (WF-
STs) is spreading in the speech recognition community.

Among the main advantages of the approach relative to tradi-
tional systems are: the elegant and uniform formalism that allows
very flexible ways of integrating multiple knowledge sources, and
the superior search performance obtained when the search network
is optimized using automata determinization and minimization.

The main disadvantages are related to the search space opti-
mization, where we may identify 3 main problems:

• The WFST determinization algorithm, based on subset con-
struction, and normally used during optimization, requires
large amounts of memory relative to the size of the resulting
WFST .

• Although the optimized search network is not much larger
than the language model (typically only 2 to 2.5 times
larger), it can still be very large and requires large amounts
of memory in runtime.

• The fact that the optimization of the search network is per-
formed offline means that the original knowledge sources
are not available at runtime. Thus, it may be troublesome
to preserve the optimality of the network, when dynami-
cally adjusting the knowledge sources. For example, when

The present work is part of Diamantino Caseiro’s PhD thesis, initially
sponsored by a FCT scholarship (PRAXIS XXI/BD/15836/98). This work
was also partially funded by IST-HLT European program project ALERT.
INESC-ID Lisboa had support from the POSI program of the “Quadro
Comunitario de Apoio III”.

Th
consist
during
re-scor
but lim
system
approa
model
model
model i
L and
that is
integra
languag

So
positio
dynam

In
problem
of our l
rithm is
We wil
WFSTs
tions an
represe
recogn
section

2. LE

The de
languag
when o
size of
subset-
resultin
non-de

In
for the
algorith
positio
result m
guage
determ
ECOGNIZING BROADCAST NEWS

l Trancoso

stems Lab.

isbon, Portugal
2f.inesc-id.pt

adapting the language model probabilities or when adding
new words or pronunciations to the vocabulary.

e most common solution proposed for the first two problems
of reducing the size of the system to the resources available
development or run time, and rely on an additional pass to
e with a larger language model. This approach is effective,
its the application of the WFST approach, to small first-pass
s. Along the same lines, but relying on a single pass, is the
ch of Dolfing and Hetherington [1], where the full language
(Gf) is factorized into a small model (Gs) and a difference
(Gf−s) such that Gf = Gs ◦ Gf−s; the small language
s incorporated with the other knowledge sources, the lexicon
the acoustic model H , in a network (N = H ◦ L ◦ Gs)
optimized offline. The full language model information is
ted in runtime by composing the network with the difference
e model (N ◦Gf−s) “on-the-fly”.

lutions to the third problem typically use “on-the-fly” com-
n to combine the optimized static search network with the
ic knowledge sources.
the following sections we will show how we address these

s in our system. We shall start by describing how the use
exicon and language model “on-the-fly” composition algo-
crucial in extending the WFST approach to larger systems.

l proceed by showing a memory-efficient representation for
. In section 4, we discuss the language model optimiza-
d present a context-sharing algorithm for language models
nted as WFSTs. In section 5 we will describe and discuss
ition experiments performed using our system. The final
summarizes the main conclusions.

XICON AND LANGUAGE MODEL COMPOSITION

terminization of the composition of the lexicon L with the
e model G is probably the most resource intensive subtask
ptimizing the search network. The reason lies on the large
the language model, and on the fact that, when applying the
construction determinization algorithm, every state of the
g WFST (det(L ◦G)) corresponds to a set of states of the
terministic L ◦G transducer.
[2] we presented a memory-efficient specialized algorithm
composition of the lexicon with the language model. Our
m is based on Mohri’s theorem [3] that states that the com-

n of sequential transducers is also sequential. This important
eans that if we determinize both the lexicon and the lan-

model, then we only need to compose them to obtain the
inistic composition. In practice, we cannot just apply the

usual composition algorithm [4], because of ε labels on the output
tape of the lexicon, which will generate so many non-coaccessible1

paths in the result, as to make the method unpractical.
Our algorithm is just a specialized composition algorithm, and

works as follows: in a preprocessing step, the set of reachable non-
ε output labels is associated with each ε-output edge of the lexicon.
That set is used during composition to avoid the generation of non-
coaccessible paths by only following ε-output edges on the lexicon
that will lead to a non-ε label compatible with labels in the language
model state.

This basic algorithm was also extended to allow output-label
and weight pushing. In [5] we showed how to extend the algorithm
to approximate “on-the-fly” minimization.

When used with a caching scheme, the overhead of performing
both the LG = L ◦ G specialized composition and the H ◦ LG
composition in runtime, is only 20% of the search effort2.

The integration of dynamic information in runtime is easy as
both the original lexicon and language model are available in run-
time. Our composition algorithm has the added advantage of opti-
mizing also the new information.

3. EFFICIENT REPRESENTATION OF WFSTs FOR ASR

Even when fully optimized, the WFSTs used in large vocabulary
tasks can be very large. In order to reduce the runtime memory
requirements, when using a large static network, we developed a
memory efficient representation for WFSTs. Our basic represen-
tation is based on an adjacency-list representation for the WFST
graph. The main data structure of that representation is a vec-
tor, containing all the edges, sorted by origin state. Each edge in
the vector is a 5-tuple containing: the identification of the origin
state; the destination state; the input label; the output label; and the
weight. This tuple occupies 20 bytes of memory. Another vector
contains the 4-byte offset to the first edge that leaves a particular
state. Thus the memory required by the basic graph representation
is 4|Q| + 20|E| bytes, where |Q| is the number of states and |E|
the number of edges.

The new compact representation uses a variable length repre-
sentation for edges that takes into account the properties of the typ-
ical integrated network. The main problem with a variable length
representation is that is it more difficult to directly access the edges
that leave a given state, as direct indexation would still require 4
bytes per state (for a pointer or an offset). We reduced the memory
required per state to 16.5 bits, by grouping the states in groups of
64 states. A master index M contains a 32-bit pointer to a chunk of
memory containing the edges of 64 states. A separate offset index
O contains the 16-bit offset of the first edge of the states in the
chunk. Thus, the first edge of state q is the O[q] edge stored in the
chunk M [q/64]. The indexation scheme is illustrated in figure 1.

Each edge contained in a chunk occupies an integral number of
bytes that can vary from 1 to 10. A variable-length encoded edge
is a sequence FDLW , where:

• F is a record of 5 bits that specifies how the edge is encoded:
2 bits specify the encoding of the destination state; 2 bits the
encoding of the input and output labels; 1 bit specifies the
encoding of the weight.

1A non-coaccessible path is a “dead-end” path that does not reach a final
state.

2The time spent evaluating the distributions (neural network or gaussian
mixtures) is not included in this percentage.

q

•

•

•

To
edges i
overhe
we use
most re

We
Portugu
networ
resenta
encodin
coding
edge.

In prev
tained
(min d
tic com
with a d
min(d
minima
with ou

3The
algorith
q / 64

1

3

Chunks

MO

. . .

+1

q

Fig. 1. Compact WFST Indexation Scheme.

D encodes the destination. The destination is encoded as
the difference between the origin and destination states of
the arc. It can be encoded in 3, 11, 19 or 27 bits. 3 of the
bits are stored in the same byte as F .

L encodes the input and output labels. If both the input and
output labels are ε, it is encoded in 0 bytes; if the output is ε
and the input is less than 256 it is encoded in one byte; if the
output is less than 65536 and the input is ε, it is encoded in 2
bytes; otherwise the input and the output are stored in 4 bytes
(the number of bits assigned to each label is determined from
the size of the corresponding alphabets.)

When the automaton is an acceptor, only the input label is
stored. It is stored in 0 bytes if equal to ε; 1 byte, if less than
256; 2 bytes, if between 256 and 65535; 3 bytes, if between
65536 and 224 − 1.

W encodes the weight. If zero it is encoded in 0 bytes; other-
wise it is stored in 2 bytes, as an integer obtained by linearly
scaling between the minimum and maximum weights of the
WFST .

access an edge in the chunk, given its offset, all the previous
n the chunk need to be traversed. In order to alleviate the
ad associated with the expansion and access to the edges,
a cache that stores the expanded set of edges that leaves the
cently accessed states.
performed various experiments using various European
ese, and North American English, large-vocabulary search

ks and language models. We observed that using this rep-
tion, we achieved an average of 5.2 bytes per edge when
g (context-independent) static search networks. When en-
language models, we achieved an average of 7.2 bytes per

4. LANGUAGE MODEL OPTIMIZATION

ious work [5], we observed that most of the gain ob-
when globally optimizing the integrated search network
et(H ◦ L ◦ G)) could be achieved by the determinis-
position of a deterministic and minimal language model
eterministic and minimal lexicon, H ◦det(min(det(L))◦

et(G))). This means that the use of a deterministic and
l language model is crucial to obtain the best performance
r composition algorithm when embedded in the decoder3.

computational overhead of our implementation of the composition
m that also approximates minimization is superior to the gain ob-

for all q ∈ Q do
SetCluster(q, q)

end for
repeat

nchanges← 0
nclusters← 0
for all q ∈ Q do

if cluster(q) = q then
H[nclusters]← (q, hash(q))
nclusters← nclusters + 1

end if
end for
sort(H)
for all i = 0..(nclusters− 2) do

(qi, hi)← H[i]
j ← i + 1
(qj , hj)← H[j]
while (j < nclusters) ∧ (hi = hj) do

(qj , hj)← H[j]
if (cluster(qi) �= cluster(qj)) ∧ equiv(qi, qj) then

SetCluster(qj , qi)
nchanges← nchanges + 1

end if
j ← j + 1

end while
end for

until (nchanges = 0)
MergeStates()

Fig. 2. Context-sharing algorithm.

It is thus very important to determinize, push and minimize the
language model.

• Determinization can be easily achieved by construction: the
language model is approximated by a WFST by representing
each context by a state and each n-gram by an edge between
contexts. The backoffs are represented by edges from spe-
cific contexts to more general ones, labeled either with ε or
with a special backoff symbol.

• Pushing consists of redistributing the weights as much to-
ward the initial state as possible. Pushing in the language
model WFST implements a long-range language model
look-ahead that goes beyond the next word.

• Minimization of the language model has the very positive
effect of sharing contexts. Minimization can be achieved
using the standard algorithm for automata, or can be ap-
proximated as shown in section 4.1.

4.1. Language Model Context Sharing

In this section we present an alternative to the standard automata
minimization algorithm for language models represented as WF-
STs. The main advantage of this context sharing algorithm is that
it only clusters equivalent states (that represent contexts) without
changing the set of edges that leave a particular state. The final
topology of the “minimized” language model WFST is thus very
close to the original one.

tained with the minimization, so, we do not use that version of the algorithm
in runtime.

Th
the sam
there is
input a
destina
of repe
WFST ,
the stra
on the
by com
the edg
that con
The has
states,
equival
hash va
algorith
equival
SetClu
returns
state of

On
to use
needs o
and the
(8|Q| b

5.1. E

All the
on the
Europe
duced b

Th
compri
ing and
detectio

Fo
ing par
of 256
The per
than us
the per
scheme

All
pentium
1GB o
and op

Th
based o
[7]. In
of featu
+ delta
lation s
trons (M
was a w
The ML
layer, a
38 con
e main idea behind the algorithm is that if two states have
e number of edges and if for every edge leaving one state,
an equivalent edge leaving the other (that is, with the same

nd output labels, the same weight and the same or equivalent
tion), then the states are equivalent. The algorithm consists
ating the comparison of each state with all the others in the
until no more equivalent states are found. The complexity of
ightforward implementation of the comparison is quadratic
number of states of the WFST . We circumvent this problem
puting a hash value for each state q (that takes into account
es that leave the state). That value is stored in a hash array H
tains all pairs (q, hash(q)), and is sorted by the hash value.
h value has the property that it is the same for two equivalent

but not obligatory different for two different states. To find
ent states we only need to compare states with the same
lue, which are consecutive on the sorted hash array. The
m, described in pseudo-code in figure 2, builds clusters of
ent states. The clusters are managed with the functions:
ster(qj , qi) that assigns qj to cluster qi; cluster(q) that

the cluster of state q; andMergeStates() that replaces each
the WFSTwith its cluster (merging states as necessary).

e of the design goals of the context-sharing algorithm was
as little memory as possible. The algorithm, as presented,
nly the space for the WFST , the hash array H (8|Q| bytes),
cluster association vector used by cluster and SetCluster
ytes).

5. RECOGNITION EXPERIMENTS

xperimental Setup

recognition experiments described in this section were based
broadcast news corpus collected in the scope of the ALERT
an project[6]. Their aim is to evaluate the networks pro-
y our composition algorithm.

e European Portuguese BN corpus collected in this project
ses two subsets: one to be used for speech recognition train-
testing and the other to be used for the development of topic
n algorithms.

r the experiments described in this section, we used the train-
t of the speech recognition corpus (around 60h), and a subset
sentences, randomly selected from the official test corpus.
formance using the 256 utterance subset was actually worse
ing the full test set, but its use allowed us to quickly obtain
formance curves needed to compare different optimization
s.
the experiments were performed using a standard 1000MHz

III PC with 1GB of RAM, running Linux. We used the
f RAM as a resource limit during component development
timization.
e best acoustic models developed in our research group are
n the combination of the output of various neural networks
our recognition experiments, we extracted 3 different sets
res from the speech signal: 12 plp coefficients + log energy

s; 12 log-rasta coefficients + log energy + deltas; 28 modu-
pectrogram features. We used 3 separate multilayer percep-

LP), one for each set of features. The input of each MLP
indow of 7 vectors centered on the vector being analyzed.
Ps had a 3-layer architecture with 500 units in the hidden

nd the output consisted of 40 softmax units corresponding to
text independent phones plus silence and inspiration noise.

WFST edges states compact size
det G 38,336,415 16,878,033 282 MB
push det G 38,336,415 16,878,033 274 MB
min det G 26,653,137 5,545,173 206 MB
min push det 26,649,611 5,543,296 198 MB

Table 1. Size of the various LM WFSTs.

The output of the 3 MLPs was combined using the average of the
logarithm of the probability estimated for each phone. The acoustic
model topology consisted of a sequence of states with no self-loop
to enforce the minimal duration of the model, and one final state
with a self-loop. The acoustic models were encoded in a single
acoustic model WFST .

We used an European Portuguese lexicon with 57k words. The
lexicon was converted to a linear lexicon WFST with 518,409 states
and 584,306 edges. Determinization reduced its size to 157,255
states and 221,321 edges, and minimization allowed an extra re-
duction to 58,837 states and 121,657 edges.

We used a 4-gram backoff language model, trained from more
than 384 million words from newspaper texts and interpolated with
models obtained from broadcast news transcriptions. The language
model has 5.1M 4-grams, 11M 3-grams, and 5.7M 2-grams. It
was converted to a deterministic WFST det G. We also generated
a pushed LM WFST push det G, by pushing det G using the
tropical semi-ring. Smaller WFSTs were obtained by applying the
context-sharing algorithm to det G and push det G, resulting in
the min det G and min push det G WFSTs. Table 1 shows the
size of the various language models.

5.2. Results

We investigated the effect of the various possible optimizations of
the components on the performance of the system by plotting the
word error rate (WER), and the real time speed (xRT), obtained
when running it with different beams.

The positive effect of the minimization of the lexicon on the
performance of the decoder can be observed in Figure 3. The min-
imization allows some parcial suffix sharing of the pronunciations
of words leading to the same language model state.

We also compared the effect of two major language model
optimizations: minimization and pushing. In figure 4, we compare
all 4 combinations of pushing and context-sharing minimization.
It is patent that context-sharing minimization has very little effect
on the performance, while pushing brings some benefits at wider
beams, at the cost of much worse performance at narrower beams.

The experiments used the compact representation of WFSTs in
memory, and where able to run in less than 512MB of RAM.

6. CONCLUSIONS AND FUTURE WORK

We have presented techniques that allow the use of the WFST ap-
proach to large tasks using modest resources. Our dinamic WFST
composition approach allowed us to improve the speed of our broad-
cast news system [6], at the same assimptotic error rate, from over
30 xRT to as little as 5 xRT.

The main limitation of this approach is that global WFST min-
imization is not used. In the future, we plan to improve our mini-

Fi

Fig. 4.

mizatio
order to

[1] H.
for
AS
De

[2] D.
the
De

[3] M.
pro
26

[4] M.
tex
Hu

[5] D.
the
AS
De

[6] H.
bro
AS
De

[7] H.
in
IC
30

32

34

36

38

40

42

44

0 1 2 3 4 5

W
E

R

xRT

det L
min det L

g. 3. Impact of the minimization of the lexicon WFST .

30

32

34

36

38

40

42

44

0 1 2 3 4 5
W

E
R

xRT

det G
min det G

push det G
min push det G

Impact of the optimizations of the language model WFST .

n approximation algorithm [5], and its implementation, in
further optimize the search network.

7. REFERENCES

Dolfing and I. Hetherington, “Incremental language models
speech recognition using finite-state transducers,” in Proc.

RU ’2001 Workshop, Madonna di Campiglio, Trento, Italy,
cember 2001.

Caseiro and I. Trancoso, “On integrating the lexicon with
language model,” in Proc. Eurospeech ’2001, Aalborg,

nmark, September 2001.

Mohri, “Finite-state transducers in language and speech
cessing,” Computational Linguistics, vol. 23, no. 2, pp.

9–311, June 1997.

Mohri, F. Pereira, and M. Riley, “Weighted automata in
t and speech processing,” in ECAI 96 Workshop. Budapest,
ngary, August 1996.

Caseiro and I. Trancoso, “Transducer composition for “on-
-fly” lexicon and language model integration,” in Proc.
RU ’2001 Workshop, Madonna di Campiglio, Trento, Italy,
cember 2001.

Meinedo, N. Souto, and J. Neto, “Speech recognition of
adcast news for the european portuguese language,” in Proc.
RU ’2001 Workshop, Madonna di Campiglio, Trento, Italy,
cember 2001.

Meinedo and J. Neto, “Combination of acoustic models
continuous speech recognition hybrid systems,” in Proc.
SLP ’2000, Beijing, China, October 2000.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	No Other Papers by the Authors

	pagenumber1: 1301
	pagenumber2: 1302
	pagenumber3: 1303
	pagenumber4: 1304

