
Scheduling, Re-Scheduling and Communication in the
Multi-Agent Extended Enterprise Environment

Joaquim Reis1, Nuno Mamede2

1 ISCTE, Dept. Ciências e Tecnologias de Informação, Avenida das Forças Armadas,
1649-026 Lisboa, Portugal

Joaquim.Reis@iscte.pt
2 IST, Dept. de Engenharia Informática, Avenida Rovisco Pais,

1049-001 Lisboa, Portugal
Nuno.Mamede@acm.org

Abstract. In this article we describe a multi -agent dynamic scheduling
environment where autonomous agents represent enterprises and manage the
capacity of individual macro-resources in a production-distribution context.
The agents are li nked by client-supplier relationships and inter-agent
communication must take place. The model of the environment, the
appropriate agent interaction protocol and a cooperative scheduling approach,
emphasizing a temporal scheduling perspective of scheduling problems, are
described. The scheduling approach is based on a coordination mechanism
supported by the interchange of certain temporal information among pairs of
client-supplier agents involved. This information allows the agents to locall y
perceive hard global temporal constraints and recognize non over-constrained
problems and, in this case, rule out non temporall y-feasible solutions and
establi sh an initi al solution. The same kind of information is then used to
guide re-scheduling to repair the initial solution and converge to a final one.

Keywords. Scheduling, Multi-Agent Systems, Supply-Chain Management.

1 Introduction

Scheduling is the allocation of resources over time to perform a collection of
tasks, subject to temporal and capacity constraints. In classical/Operations Research
(OR) scheduling approaches, a centrali zed perspective is assumed: all problem data
is known by a central entity and scheduling decisions are taken by the same entity,
based on a well defined criteria. Sometimes, in more modern Artificial Intelli gence
(AI), or mixed OR/AI, based approaches, the same kind of centrali zed perspective is
assumed too. For a general introduction to OR approaches to scheduling problems
see [9] or [2]; AI based approaches can be found in [5], [25] or [10], for instance.
Planning and coordination of logistics activities has been, in the areas of
OR/Management Science, the subject of investigation since the sixties [8]. The
problem of scheduling in this kind of environments has had, recently, a more
dedicated attention; see [6], [1], [11] or [15], for instance. In this article, the specific

logistics context of the supply-chain/Extended Enterprise (EE) [14] is considered,
for the short-term activity of scheduling of production-distribution tasks. The EE is
usually assumed to be a kind of cooperative Virtual Organization, or Virtual
Enterprise, where the set of inter-dependent participant enterprises is relatively
stable; for concepts, terminology and classification see [3]; in [4] other approaches to
scheduling in this kind of context can be found. A distributed approach is more
natural in this case, because scheduling data and decisions are inherently distributed,
as resources are managed by individual, geographicall y decentrali zed and
autonomous entities (enterprises, organizations). So, in our approach, we adopted
the AI Multi -Agent Systems paradigm (see [13] or [24]). In the following, we
describe ongoing investigation developing from work published on the subject of
multi -agent scheduling in production-distribution environments (see [16], [17], [18],
[19], [20] and [21]).

The scheduling problems we consider have the following features:
a) Communication is involved - Agents must communicate (at least to exchange

product orders with clients/suppliers);
b) Cooperation is involved - Each agent must cooperate so that it won’ t invalidate

feasible scheduling solutions;
c) Scheduling activity is highly dynamic - Problem solution development is an

on-going process during which unforeseen events must always be
accommodated, and re-scheduling and giving up a scheduling problem are
options to be considered.

The following sections present: a brief description of the model of the
multi -agent scheduling environment (sec.2), the agent interaction protocol (sec.3),
the cooperative approach proposed for multi -agent scheduling problems (sec.4), the
initial scheduling step (sec.5) and the re-scheduling (sec.6), both from an individual
agent perspective, and finall y, future work and conclusions (sec.7). Secs. 5 and 6 are
presented with examples based on simulations.

2 The Scheduling Environment Model

In past work (referred above) we have proposed a model of the EE scheduling
environment based on an agent network, with each agent managing an aggregate
scheduling resource, representing a production, a transportation, or a store resource,
and linked through client-supplier relationships. A scheduling resource is just an
individual node of a physical network of resources, and accommodates the
representation of the agent tasks scheduled and the available capacity along a
certain scheduling temporal horizon. Ordinary network agents are named capacity,
or manager, agents, because they are responsible for managing the capacity of a
resource, and they can be production, transportation or store class agents;
production and transportation class agents are grouped under the processor agent
class, because the capacity they manage is based on a rate. A special supervision
agent, with no resource, plays the role of an interface with the outside, and can
introduce new scheduling problems into the agent network.

Pairs of client-supplier capacity agents can communicate, basicall y through the
exchange of product request messages (see next section), which contain product,
quantity of product and proposed due-date information. The supervision agent
communicates with special agents playing the roles of retail and raw-material
agents, located at the downstream and the upstream end of the agent network (which
are pure clients and pure suppliers for the network), respectively.

A scheduling problem is defined by a global product request from the outside of
the agent network (i.e., a request of a final product of the network), the global
due-date DD, and the global release date RD. These two dates are the limits of the
scheduling temporal horizon and are considered the hard global temporal constraints
of the problem. The supervision agent introduces a new scheduling problem by
communicating a global product request from outside to the appropriate retail agent
(networks can be multi -product so, the set of products deli verable can depend on the
retail agent); later, after the capacity agents have propagated among them, upstream
the agent network, the necessary local product requests, the supervision agent will
collect global product requests to outside from raw-material agents. A scheduling
problem will cease to exist in the network when the time of the last of the local
due-date comes, or if some local requests are rejected, or accepted and then
canceled (the supervision agent knows this as messages of satisfaction, rejection and
cancellation will be propagated to retail and raw-material agents and then
communicated to it).

In order to satisfy a product request from a client a capacity agent must schedule
a task on its resource. A task needs a supply of one (in the case of a store or
transportation agent), or one or more products (in the case of a production agent and
depending on the components/materials for the task product). For those supplies the
agent must send the appropriate product requests to the appropriate suppliers.1 The
task consumes a non-changing amount of resource capacity during its temporal
interval. The duration of the task depends on the product, the quantity of product
and additional parameters related to the characteristics of the resource and, in the
case of processor agents, to the amount of capacity dedicated to the task.2 The
detail s of these latter parameters are omitted here to allow simplicity of explanation,
and we will assume a non-changing duration for all tasks, except for store tasks
(with flexible duration, and minimum of 1 time unit).

Although tasks are private to the agents (only the communication messages are
perceived by more than one agent), we can view the set of tasks that some agents of
the network schedule to satisfy a global product request from outside, as whole, as
belonging to a network job, see example in Fig. 1. This is a just an analogue of the
concept of job used in classical production scheduling problems.

1 We assume that there is, for each capacity agent, a unique supplier for each supply product.

As a result of this simpli fying assumption, the lack of a product supply has, as a final
result, the network being unable to satisfy a global product request from the outside.
Allowing multiple suppliers for the same supply product opens the door to another issues
(li ke choosing the preferred supplier, possibly with negotiation based on prices, or
due-dates), in which we are not interested, for now.

2 Basically, more capacity invested gives a shorter task duration.

A solution for a scheduling problem is a set of product requests agreed by pairs of
client-supplier agents and the set of agent tasks, necessary to satisfy the global
product request given by the problem, forming the corresponding network job. A
feasible solution has nor temporal nor capacity confli cts, i.e., it respects both all
temporal and all capacity constraints. For capacity constraints to be respected, no

capacity over-allocation must occur with any task of the solution, for any agent, at
any moment of the scheduling temporal horizon. For temporal constraints to be
respected, all l ocal product requests of the solution must fall within the global
release date and global due-date of the problem; also, for each agent, the interval of
its task must fall i n between the due-date agreed for the client request and (the latest
of) the due-date(s) agreed for the request(s) made to the supplier(s), and the latter
due-date(s) must precede the former.

More detail s on the resources and the physical network are given in [16] and [18];
about the agent network and agent architecture see [17], [18], and [19].

3 The Agent Interaction Protocol

In this section we expose the high level inter-agent protocol used for scheduling in
the EE network.

The agent interaction activity for scheduling occurs through the interchange of
messages, of predetermined types, between pairs of client-supplier agents. The
exchange of a message always occurs in the context of a conversation between the
sender and the receiver agents. A conversation has a conversation model, which
contains information about the predetermined sequences of the types of messages
exchangeable and is defined through a finite state machine. An interaction protocol
is defined as a set of conversation models. For the interaction of capacity agents we
defined the Manager-Manager interaction protocol, represented in Fig. 2.

P

� 7
i,14

network job � �� �
i,14

P

� 9
i,14

P

� 11
i,14

� 18
i,14

T

� 12
i,14

� 19
i,14

ST

� 14
i,14

� 1
i,14

� 4
i,14

P

� 8
i,14

� 17
i,14 agent g7 task agent g1 task

Fig. 1. A network job (job � �� � i,14). The task of an agent gk for the ith global request to

retail agent gr is denoted by � � i,r
k

 (and this task belongs to the network job denoted by

� �� � i,r); P, T and S denote production, transportation and store tasks, respectively.

The protocol has the associated conversation models Request-from-Client and
Request-to-Supplier, described as finite state machine diagrams in Fig. 2-a and Fig.
2-b, and to be used by an agent when playing the roles of a supplier and a client
agent, respectively. Fig. 2-c describes the types of messages exchangeable.

4 A Cooperative Multi-Agent Scheduling Approach

Classicall y, scheduling is considered a diff icult problem [7]. In general, solutions for
a scheduling problem have to be searched for, and the search space can be very
large. Additionally, for a multi -agent scheduling problem, a part of the effort is
invested in coordination of the agents involved which, in our case, means sharing
information through message exchange. Message exchange is considered costly so,
methods of pruning the search space for finding at least a first feasible solution with
minimal coordination efforts are considered satisfactory.

The approach we propose in this article, for the cooperative individual (agent)
scheduling behavior, is a minimal approach, that is, an agent viewing a scheduling
problem solution as feasible won't do anything respecting to the scheduling problem.
A first version of this approach appeared in [20]; in [21] we presented a refined
approach only for processor, i.e., production or transportation, agents; in the present
article we cover also store agents and, additionally, include the respective minimal
re-scheduling actions for processor and store agent cases.

Consider two sets of solutions for a scheduling problem: the set of time-feasible
solutions, which respect all temporal constraints, and the set of resource-feasible
solutions, which respect all capacity constraints. A feasible solution is one that is

b) Request - to-Suppl ier
 conversa t ion mode l .

/request

4

rejection /

cancelation /

/cancelation

satisfaction/

31

acceptance /

2

5

6

re-request /

/re-acceptance
/re-rejection

/
re-requestre

-a
cc
ep
ta
nc
e

/

re
-r
ej
ec
ti
on

/

transitions (message types):
receive / send

transitions (message types):
receive / send

a) Request - f rom-Cl ient
 conversa t ion mode l .

request /

4

/rejection

cancelation/

/cancelation

/satisfaction

31

/acceptance

2

6

re-request
//

re
-a
cc
ep
ta
nc
e

/
re
-r
ej
ec
ti
on re-rejection /

5

/re-request

re-acceptance /

c) Message
 types and
 descr ip t ion .

request - product
r e q u e s t , s e n t b y a
c l i e n t a g e n t t o a
supplier agent.

acceptance - acceptance of
a previously received product
request, sent by the supplier to
the client.

rejection - rejection of a
p rev ious l y rece i ved p roduc t
request, sent by the supplier to
the client.

r e - r e q u e s t -
re-scheduling request,
sen t by the supp l ie r
(c l ient) to the c l ient
(supp l ie r) , ask ing to
r e - s c h e d u l e a
p rev ious l y accep ted
p roduc t r eques t t o a
given due-date.

re-acceptance - accep tance o f a
previously received re-scheduling request,
sen t by t he rece i ve r t o t he sende r o f t he
re-scheduling request.

r e - r e j e c t i o n - r e j e c t i o n o f a
previously received re-scheduling request,
sen t by t he rece i ve r t o t he sende r o f t he
re-scheduling request.

cancelation - s i g n a l s g i v i n g u p a
previously accepted product request, sent by
the supplier (client) to the client (supplier).

satisfaction - s igna ls de l ivery o f a
previously accepted product request, sent by
supplier to client at the time of the due-date
of the product request.

Fig. 2. Conversation models and messages for the Manager-Manager interaction protocol.

both time-feasible and resource-feasible so, the set of feasible solutions is the
intersection of those two sets. A problem is temporall y over-constrained if the set of
time-feasible solutions is empty, and is resource over-constrained if the set of
resource-feasible solutions is empty. If a problem has both non-empty time-feasible
and resource-feasible solution sets, and their intersection is non-empty, then the
problem has feasible solutions. We propose an approach using the following three
step procedure, for each individual capacity agent:
Step 1. Acceptance and initial solution - Detect if the problem is temporall y

over-constrained, and if it isn’ t, establi sh an initial solution, and proceed in the
next step; if it is, terminate the procedure by rejecting the problem, because it has
no feasible solution;

Step 2. Re-schedule to find a time-feasible solution - If the establi shed solution is
time-feasible, proceed in the next step; if it isn’ t, re-schedule to remove all
temporal conflicts;

Step 3. Re-schedule to find a feasible solution - For a resource-feasible solution,
terminate the procedure; otherwise, try to re-schedule to remove all capacity
confli cts without creating temporal confli cts, resorting to cancellation, with task
un-scheduling, as a last choice, if necessary.
As some approaches in the literature, this procedure starts by establi shing one

initial, possibly non-feasible, solution which is then repaired in order to remove
confli cts; see, for instance, [12]. Steps 1 and 2 of the procedure are oriented for a
temporal scheduling perspective and concern only to a single scheduling problem of
the agent. Step 3 is oriented for a resource scheduling perspective and can involve
all scheduling problems of the agent at step 3, as all tasks of the agent compete for
the agent resource capacity.

5 Step 1: Scheduling an Initial Solution

We now show, through examples for processor and store class agents, how an agent
can locall y recognize a non temporall y over-constrained problem and, in that case,
contribute to establish an initial solution (step 1).

For a processor agent, suppose an agent g7 has a scheduling problem with the

processor task � i,14
7 of network job in Fig. 1. In Fig. 3-a, a possible situation for

this task (which also represents a feasible solution for the problem) is represented on
a timeline. As g7 has two suppliers for the task, two requests to two suppliers are

shown, � i,14
7,8 and � i,14

7,9 , besides the request from the client, � i,14
4,7 . Intervals

(denoted by � and 	 symbols) and temporal slacks are shown in Fig. 3-a. Symbols
fij, fim, FEJ, FEM, FJ and FM denote, respectively, the internal downstream
slack, internal upstream slacks, external downstream slack, external upstream
slacks, downstream slack and upstream slacks. For each kind of upstream slacks
there is one per each supplier (slacks are represented by arrows). By definition:

FJ i,14
7

=FEJ i,14
7

+fij i,14
7 , fij i,14

7
=TIME(
 i,14

4,7
)-ENDTIME(� i,14

7
)

FM i,14
7,j

=FEM i,14
7,j

+fim i,14
7,j , fim i,14

7,j
=STARTTIME(� i,14

7
)-TIME(
 i,14

7,j
)

(j=8,9)
Internal slacks are inserted locall y, by the initiative of the agent, when scheduling

the task and making requests to suppliers; external slacks are imposed by the other
agents of the network. It is assumed that, in any case, the agent will maintain non
negative internal slacks. Each of the � 's is an interval between one of the supplier
due-dates and the client due-date (13 and 19, and 12 and 19, in Fig. 3-a); each of the

's is an interval between one of the earliest start times and the latest finish time for
the task (10 and 21, and 11 and 21, in Fig. 3-a). Each of the latter pairs of temporal

points are hard temporal constraints for one of the former pairs of due-dates. Also,
the temporal end points of the most restrictive

 interval (11 and 21 in Fig. 3-a) are

hard temporal constraints for the task; let us denote these by RD i,14
7 and DD i,14

7 ,

for the upstream and downstream point, respectively.

�
i,14
1

request
f rom c l ient

request
to suppl ier

time

25 2827 29 30 31262420 21 22 23

�
i,14
14,1�

i,14
1,4

�
i,14
1

�
i,14
1

FEJi,14
1

FJi,14
1

fiji,14
1fimi,14

1FEMi,14
1

FMi,14
1

b) S to re schedu l ing p rob lem.

�
i,14
7�

i,14
7,8�

i,14
7,9 request

f rom c l ient
requests

to suppl iers

fiji,14
7

�
i,14
4,7

time

15 1817 19 20 21161410 11 12 139

FEJi,14
7

FJi,14
7FMi,14

7,8

fimi,14
7,9FEMi,14

7,9

FMi,14
7,9

�
i,14
7,9

�
i,14
7,8

�
i,14
7,9

�
i,14
7,8

fimi,14
7,8FEMi,14

7,8

a) Processor schedu l ing p rob lem.

Fig. 3. Scheduling problem parameters: a) for processor agent g7, and b) for store agent g1
(for the values in the timelines of these two cases no relationship is intended).

It is easy to see that, in order for a solution to be time-feasible, the interval of the
task must be contained in the most restricted � interval, and each � interval must be
contained in the corresponding (same supplier) � interval. For this to hold, no
temporal slack can be negative. Also, if the duration of the most restrictive �
interval is less than the task duration, the problem is temporall y over-constrained,
and the agent can reject it.

We propose that product request messages from the client, additionally to product
request information, carry the value of the FEJ slack; also, request acceptance
messages from suppliers will carry the value of the respective FEM slack. In our

example, agent g7 would then calculate the DD i,14
7 and RD i,14

7 values by:

DD i,14
7

=TIME(� i,14
4,7

)+FEJ i,14
7 and RD i,14

7
= MAX
j=8,9

(RD i,14
7,j

)

where: RD i,14
7,j

=TIME(� i,14
7,j

)-FEM i,14
7,j

(j=8,9)

When the agent receives request � i,14
4,7 from the client, it will , guaranteeing

non-negative values of fij and fim for the task to be scheduled, make requests

� i,14
7,8 and � i,14

7,9 to suppliers, passing them also the (supplier FEJ) value

FJ i,14
7

+fim i,14
7,j (for j=8,9). When the agent receives all the request acceptances

from the suppliers, verifies first if the problem is temporall y over-constrained, by

testing if DD i,14
7

-RD i,14
7

 < DURATION(� i,14
7

). If this is true the problem must

be rejected. Otherwise, the agent will send the acceptance message to the client,

passing it also the (client FEM) value FM i,14
7

+fij i,14
7 , where

FM i,14
7

=STARTIME(� i,14
7

)-RD i,14
7 . If step 1 concludes with a non temporall y

over-constrained problem, agent g7 will i nternall y keep the tuple

<DD i,14
7

,{RD i,14
7,8

,RD i,14
7,9

}, � i,14
4,7

,{ � i,14
7,8

, � i,14
7,9

}, � i,14
7

>, which represents

the agent local perspective of the scheduling problem, and also includes (a part of)
the initial solution.

For a store agent, suppose an agent g1 has a scheduling problem with the store

task � i,14
1 of network job in Fig. 1. In Fig. 3-b, a possible situation for this task

(which also represents a feasible solution for the problem) is represented on a
timeline. The case is similar to the one for agent g7, with the exceptions described
in the following. There is only one request to a supplier, as g1 is a store agent. The
internal slacks are defined differently: the task interval is equal to the (unique) �
interval, and part of the task duration is considered as internal slack (if its duration is
greater than 1, which is the minimum assuming the task must exist), with the

relationship fij i,14
1 +fim i,14

1 =DURATION(� i,14
1)-1 always holding. Fig. 3-b

suggests symmetrical definitions for fij and fim slacks, with the minimum
duration interval "centered" in the � interval but, for purposes of temporal constraint

violation identification (see next section), the following definitions must be used.
For the downstream side violations (cases 1 and 3, in the next section), fij and
fim are defined by (the minimum duration interval is shifted to the left):

fij i,14
1 =DURATION(� i,14

1)-1, and fim i,14
1 =0

For the upstream side violations (cases 2 and 4, in the next section), fij and
fim are defined by (the minimum duration interval is shifted to the right):

fij i,14
1 =0, and fim i,14

1 =DURATION(� i,14
1)-1

The problem is temporall y over-constrained if DD i,14
7

-RD i,14
7

 < 1. The values

of FEJ i,14
1 +DURATION(� i,14

1)-1 and FEM i,14
1 +DURATION(� i,14

1)-1 must be

passed to the supplier and to the client (as the supplier FEJ value, and the client
FEM value), respectively. Finall y, if step 1 concludes with a non temporall y

over-constrained problem, agent g1 will keep the tuple <DD i,14
1 ,{RD i,14

1 }, � i,
,
14

14 1,

{ � i,
,
14

1 4 }, � i,14
1 >.

6 Step 2: Re-Scheduling for a Time-Feasible Solution

In this section we show how, starting from an initial solution with temporal
confli cts, agents g7 and g1 can locall y contribute to obtain a time-feasible solution
(step 2).

For the local situations represented in Fig. 3-a and Fig. 3-b, all slacks are positi ve
so, the solution is seen as temporall y-feasible (by agent g7, and agent g1,
respectively). In these cases, an agent will do nothing, unless it receives any
re-scheduling request, which it could accept provided non-negative internal slacks
can be maintained, for a processor agent, or a task with duration greater than 0 is
possible, in the case of a store agent. Otherwise, four kinds of possible local
situations can occur where the agent itself must take the initiative of some
re-scheduling actions.

The situations referred are described by the re-scheduling cases 1, 2, 3 and 4, for
which we show examples in Fig. 4 for processor agents (for agent g7), and in Fig. 5
for store agents (for agent g1). Each figure represents, for each case: a) the situation
detected, and b) the situation after a minimal re-scheduling action. No relationship
is intended among timeline values of the processor and the store agent cases. In the
text following, upper indexes are omitted in slack symbols in order to cover both,
processor and store, agent cases. Cases 1 and 2 must be considered first, by the
agent.

Case 1 occurs if FJ i,14<0 and FEJ i,14<0 (the task and the client request violate

the hard temporal constraint downstream, 17 in Fig. 4-1-a, and 20 in Fig. 5-1-a). The
detection of case 1 must be followed by the appropriate task re-scheduling and client

request re-scheduling to earlier times (resulting in the situation shown in Fig. 4-1-b,
and Fig. 5-1-b). Re-scheduling of some requests to suppliers can (or cannot) then be
necessary to maintain non-negative fim slacks, at the upstream side.

Case 2 occurs if, for some supplier, FM i,14<0 and FEM i,14<0, (the task and

some requests to suppliers violate hard temporal constraints upstream, 16 in Fig.
4-2-a, and 29 in Fig. 5-2-a). The detection of case 2 must be followed by the
appropriate task re-scheduling and the re-scheduling of the offending requests to
suppliers to later times (resulting in the situation shown in Fig. 4-2-b, and Fig.
5-2-b). Re-scheduling of the client request can (or cannot) then be necessary to
maintain a non-negative fij slack, at the downstream side.

After handling cases 1 and 2, cases 3 and 4 are handled.

Case 3 occurs if FJ i,14<0 (the client request violates the hard temporal

constraint downstream, 19 in Fig. 4-3-a, and 26 in Fig. 5-3-a). The detection of case

time

15 17161410 11 12 136 7 8 9

�
i,14
7�

i,14
7,8� �

i,14
7,9

fimi,14
7,9

FEMi,14
7,9

FMi,14
7,9

�
i,14
7,9

�
i,14
7,9

�
i,14
7,8

�
i,14
7,8

4-a) Processor case 4 s i tuat ion.

time

15 17161410 11 12 136 7 8 9

�
i,14
7�

i,14
7,8�

i,14
7,9

4-b) Si tuat ion af ter min imal re-schedul ing.

� �
i,14
7

time

15 1817161410 11 12 136 7 8 9

�
i,14
7,8� �

i,14
7,9

fimi,14
7,9

FEMi,14
7,9

FMi,14
7,9

�
i,14
7,9

�
i,14
7,8

�
i,14
7,8

�
i,14
7,9

2-a) Processor case 2 s i tuat ion.

time

15 1817161410 11 12 136 7 8 9

�
i,14
7

�
i,14
7,9�

i,14
7,8

2-b) Si tuat ion af ter min imal re-schedul ing.

time

15 1817 19 2016

�
i,14
7

�
i,14
4,7

1-b) Si tuat ion af ter min imal re-schedul ing.

time

15 1817 19 2016

� �
i,14
7 � �

i,14
4,7

fiji,14
7

FEJi,14
7

FJi,14
7

�
i,14
7,9

�
i,14
7,8

�
i,14
7,9

�
i,14
7,8

1-a) Processor case 1 s i tuat ion.

time

15 1817 19 2016

�
i,14
7 �

i,14
4,7

3-b) Si tuat ion af ter min imal re-schedul ing.

fiji,14
7

�
i,14
7 � �

i,14
4,7

time

15 1817 19 2016

FEJi,14
7FJi,14

7

�
i,14
7,9�

i,14
7,8

�
i,14
7,8

�
i,14
7,9

3-a) Processor case 3 s i tuat ion.

Fig. 4. Examples of re-scheduling cases 1, 2, 3 and 4, for a processor agent, with situations
before, and after, minimal re-scheduling.

3 must be followed by the appropriate client request re-scheduling to an earlier time
(resulting in the situation shown in Fig. 4-3-b, and Fig. 5-3-b).

Case 4 occurs if, for some supplier, FEM i,14<0 (some requests to suppliers

violate hard temporal constraints upstream, 13 in Fig. 4-4-a, and 23 in Fig. 5-4-a).
The detection of case 4 must be followed by the appropriate re-scheduling of the
offending requests to suppliers to later times (resulting in the situation shown in Fig.
4-4-b, and Fig. 5-4-b).

� �
i,14
1

� �
i,14
1,4

time

252420 21 22 231918

i,14
14,1

fimi,14
1

FEMi,14
1 FMi,14

1

!
i,14
1

"
i,14
1

4-a) Store case 4 s i tuat ion.

time

252420 21 22 231918

#
i,14
1

i,14
1,4

i,14
14,1

4-b) S i tuat ion a f ter min imal re-schedul ing .

time

25 2827 29 30262420 21 22 231918

#
i,14
1

i,14
14,1

i,14
1,4

2-b) S i tuat ion a f ter min imal re-schedul ing .

� �
i,14
1

� �
i,14
14,1

time

25 2827 29 30262420 21 22 231918

� �
i,14
1,4

fimi,14
1

FEMi,14
1

FMi,14
1

!
i,14
1

"
i,14
1

2-a) Store case 2 s i tuat ion.

� �
i,14
1

� �
i,14
1,4

time

2420 21 22 231918

� �
i,14
14,1

FEJi,14
1

FJi,14
1 fiji,14

1

!
i,14
1

"
i,14
1

1-a) Store case 1 s i tuat ion.

time

2420 21 22 231918

#
i,14
1

i,14
1,4

i,14
14,1

1-b) S i tuat ion a f ter min imal re-schedul ing .

time

25 2827262422 23

#
i,14
1

i,14
14,1

i,14
1,4

3-b) S i tuat ion a f ter min imal re-schedul ing .

� �
i,14
1

� �
i,14
14,1

time

25 2827262422 23

i,14
1,4

FEJi,14
1FJi,14

1

fiji,14
1

!
i,14
1

"
i,14
1

3-a) Store case 3 s i tuat ion.

Fig. 5. Examples of re-scheduling cases 1, 2, 3 and 4, for a store agent, with situations
before, and after, minimal re-scheduling.

7 Conclusion and Future Work

We described a multi -agent dynamic scheduling environment involving
communication and cooperation, and an approach for multi -agent cooperative
scheduling based on a three step procedure for individual agents. Step 1 allows
agents to detect locall y if the problem is temporall y over-constrained and, in the
case it isn't, schedule an initial, possibly non time-feasible, solution. By locall y
exchanging specific temporal slack values, agents are able to locall y perceive the
hard global temporal constraints of a problem, and rule out non time-feasible
solutions in the subsequent steps. Each of the slack values exchanged in step 1
corresponds, for a particular agent, to a sum of slacks, downstream and upstream the
agent network, and so, they cannot be considered private information of any agent in
particular. In step 2, if necessary, agents repair the initial solution to obtain a
time-feasible one.

The procedure is very general with respect to its step 3. This step can be refined
to accommodate additional improved coordination mechanisms for implementing
certain search strategies, based on capacity/resource constrainedness (e.g., see [23]
or [22]), leading the agents on a fast convergence to specific feasible solutions. For
instance, feasible solutions satisfying some scheduling preferences or optimizing
some criteria, either from an individual agent perspective, or from a global one, or
both. This is a subject for our future work.

References

1. Arnold, Jörg, et al, Production Planning and Control within Supply Chains, ESPRIT
project 20544, X-CITTIC, 1997.

2. Blazewicz, J.; Ecker, K.H.; Schmidt, G.; Weglarz, J., Scheduling in Computer and
Manufacturing Systems, Springer Verlag, 1994

3. Camarinha-Matos, Luís M.; Afsarmanesh, Hamideh, The Virtual Enterprise Concept, in
Infrastructures for Virtual Enterprises, Camarinha-Matos, L.M. and Afsarmanesh, H.
(eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, 3-14.

4. Camarinha-Matos, Luís M.; Afsarmanesh, Hamideh, Infrastructures for Virtual
Enterprises, Networking Industrial Enterprises, Luís M. Camarinha-Matos, Hamideh
Afsarmanesh (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

5. Dorn, J.; Froeschel, K., Scheduling of Production Processes, Dorn, J.; Froeschel, K.
(eds.), Elis Horwood, Ld., 1993.

6. Fox, Mark S., et al, The Integrated Supply Chain Management System, Department of
Industrial Engineering, University of Toronto, Canada, 1993.

7. Garey, M.R.; Johnson, D.S., Computers and Intractabilit y: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., New York, 1979.

8. Graves, S.C.; Kan, A.H.G. Rinnooy; Zipkin, P.H., (eds.), Logistics of Production and
Inventory, Handbooks in Operations Research and Management Science, Volume 4,
North-Holland, Amsterdam, 1993.

9. Kan, A.H.G. Rinnooy, Machine Scheduling Problems, Martinus Nijhoff , The Hague,
1976.

10. Kerr, Roger; Szelke, Eli zabeth (eds.), Artifi cial Intelli gence in Reactive Scheduling,
Chapman & Hall, 1995.

11. Kjenstad, Dag, Coordinated Supply Chain Scheduling, PhD. Thesis, Norwegian
University of Science and Technology, Trondheim, Norway, 1998.

12. Minton, Steven, et al, Minimizing Confli cts: a Heuristic Repair Method for Constraint
Satisfaction and Scheduling Problems, Artificial Intelligence 58, 1992, 161-205.

13. O'Hare, G.M.P.; Jennings, N.R., Foundations of Distributed Artifi cial Intelli gence, John
Wiley & Sons, Inc., 1996, New York, USA.

14. O'Neill , H.; Sackett, P., The Extended Enterprise Reference Framework, Balanced
Automation Systems II , Camarinha-Matos, L.M. and Afsarmanesh, H. (eds.), 1996,
Chapman & Hall, London, UK, 401-412

15. Rabelo, Ricardo J.; Camarinha-Matos, Luis M.; Afsarmanesh, Hamideh, Multiagent
Perspectives to Agile Scheduling, Basys'98 International Conference on Balanced
Automation Systems, Prague, Czech Republic, 1998.

16. Reis, J.; Mamede, N.; O'Neill , H., Ontologia para um Modelo de Planeamento e
Controlo na Empresa Estendida, Proceedings of the IBERAMIA'98, Lisbon, Portugal,
1998, Helder Coelho (ed.), Edições Colibri, Lisbon, Portugal, 43-54 (in portuguese).

17. Reis, J.; Mamede, N.; O’Neill , H., Agent Communication for Scheduling in the Extended
Enterprise, Proceedings of the IFIP TC5 WG5.3/PRODNET Conference on
Infrastructures for Virtual Enterprises, Porto, Portugal, 1999, Camarinha-Matos, L.M.,
Afsarmanesh H. (eds.), Kluwer Academic Publi shers, Dordrecht, The Netherlands, 1999,
353-364.

18. Reis, J.; Mamede, N., What’s in a Node, Nodes and Agents in Logistic Networks,
Proceedings of the ICEIS’99, 1st International Conference on Enterprise Information
Systems, Setúbal, Portugal, 1999, Filipe, J. and Cordeiro, J. (eds.), 285-291.

19. Reis, J.; Mamede, N., An Agent Architecture for Multi Agent Dynamic Scheduling,
Proceedings of the ICEIS’2000, 2nd. International Conference on Enterprise Information
Systems, Stafford, UK, 2000, Sharp, B., Cordeiro, J. and Filipe, J. (eds.), 203-208.

20. Reis, J.; Mamede, N.; O’Neill , H., Locall y Perceiving Hard Global Constraints in Multi -
Agent Scheduling, Journal of Intelligent Manufacturing, Vol. 12, No. 2, 2001, 227-240.

21. Reis, J.; Mamede, N., Multi -Agent Dynamic Scheduling and Re-Scheduling with Global
Temporal Constraints, Proceedings of the ICEIS’2001, 3rd International Conference on
Enterprise Information Systems, Setúbal, Portugal, 2001, Miranda, P., Sharp, B.,
Pakstas, A. and Filipe, J (eds.), Vol. I, 315 321.

22. Sadeh, Norman, Micro-Oportunistic Scheduling: The Micro-Boss Factory Scheduler,
Intelligent Scheduling, Morgan Kaufman, 1994, Chapter 4.

23. Sycara, Katia P.; Roth, Steven F.; Sadeh, Norman; Fox, Mark S., Resource Allocation in
Distributed Factory Scheduling, IEEE Expert, February, 1991, 29-40.

24. Weiss, Gerhard (ed.), Multiagent Systems, A Modern Approach to Distributed Artifi cial
Intelligence, The MIT Press, 1999.

25. Zweben, Monte; Fox, Mark S., Intelli gent Scheduling, Morgan Kaufmann Publi shers,
Inc., San Francisco, California, 1994.

